

Your Partner in Smart Solutions

DATA SHEET

Thick film, lead free

TF6100 Lead-free material

01 Description

InSensor® TF6100 material is a lead-free material and is based on potassium-, sodium-, niobate (KNN). Although not all properties of KNN at present are fully matching those of PZT, KNN has a competitive advantage in medical applications where lead containing substances are banned. The material is compatible with thick film technology and the properties are almost fully conserved in the change from bulk to thick film. The change in properties is mainly attributed to increased porosity in the thick film compared to the bulk material. Although InSensor® TF6100 is not yet commercially available, it can be tested upon request.

Repeatable performance

The main focus through our entire production process is to provide materials and components with the highest possible reproducibility of properties and parameters and to obtain the lowest aging rates in the industry.

Our materials have a variation of $\pm 5\%$ for all parameters. This reduces the requirements for impedance matching, frequency tuning and dimensioning of the housing meaning fewer rejects and lower costs.

Customised solutions

We have more than 60 years of experience in the production of advanced piezoelectric ceramics. Our team has extensive expertise in customising designs to match the customer's needs.

Please contact us to discuss your requirements in further detail.

02 Key features and benefits

- Lowest batch to batch variation in the industry
- Stable material with consistent performance
- Customised or standard designs
- Lead-free material

03 Applications

- High frequency medical imaging
- Intergrated miniaturized phased array ultrasound scanners
- Implants
- Intra-body diagnostics

04 Contact

CTS | Ferroperm Tel: +45 49 12 71 00 E-mail: pz@ctscorp.com www.ferropermpiezoceramics.com

DATA SHEET

TF6100 lead-free material

05 Material properties

Electrical	Symbol	TF6100
Relative dielectric permittivity at 1 kHz	K₃₃⊤	250
Dielectric dissipation factor at 1 kHz	tanδ	50 x 10 ⁻³
Electromechanical Coupling factors	kp kt	*
Piezoelectric charge coefficient Piezoelectric voltage coefficient Mechanical	d33 g33	80 pC/N * x 10-3 Vm/N
Acoustic impedance	Za	*MRayl
Mechanical quality factor	Qm ^E _t	*

Note: Due to continuous process improvement, specifications are subject to change without notice. Please be aware that extreme dimensions and geometries can lead to exaggeration in tolerances in all materials. * Under investigation